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Using a point dipole radiator approximation, we extend the study of Boykin, Hite, and Singh@Am.
J. Phys.70 ~4!, 415–420~2002!# by considering electromagnetic radiation from both the capacitors
and the wire loop to account for the missing energy in the popular two-capacitor Kirchoff circuit.
Through a series of gedanken experiments in which successively more realistic circuit elements are
added, we assess the significance of electromagnetic radiation in accounting for all the missing
energy. Extensive use is made of an energy partition function to obtain many results without an
explicit solution of nonlinear differential equations. However some difficulties remain, which are
posed by the required boundary conditions when an inductanceL is included. Implications for radio
frequency interference, as well as novel antenna designs are also discussed. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

In a recent paper, Boykin, Hite, and Singh1 considered the
two-capacitor problem with radiation using an electric c
rent loop model from which they recovered the missing
ergy in the traditional Kirchoff circuit.2 The circuit appar-
ently violates energy conservation when one capacito
suddenly switched to transfer charge to another. This para
had been discussed previously3–5 without a quantitative
treatment of radiation. Reference 1 brought to light the s
nificance of radiation, which can in certain circumstanc
account for all the missing energy~with apologies for the
pun!. In this paper we examine the significance of the rad
tion further and show explicitly that there is radiation fro
the capacitors that was not considered in Ref. 1. We sh
that the neglect of capacitor radiation requires some spe
arrangements, which could be realized by enclosing each
pacitor in a Faraday cage for example, and cannot be a
matically obtained by going to a small~as compared to the
radius of the wire loop! point dipole limit.

The capacitor dipole radiator, in which the displacem
current replaces the electron current of a wire dipole rad
tion source, is not usually discussed in many standard t
on electromagnetism6–8 and in particular antenna theory.9–11

The exception is Schelkunoff,10,12,13who highlighted the du-
ality of magnetic dipole radiation due to a physical elect
current loop and the electric dipole radiation due to a fic
tious magnetic ‘‘charge’’ current loop in his treatment.14,15

Schelkunoff’s seminal biconical antenna12,15 is perhaps one
of the few exactly solvable antenna models that also dem
strates capacitor radiation.

The importance of direct radiation from capacitors has
portant implications for radio frequency interference.16 It
also is an important issue for alternative nonconventio
antenna designs, currently hotly debated in both the e
neering and amateur radio literature.17,18 It is further hoped
that this paper will help to clarify the basic physics involv
in these alternative antennas and to provide a more comp
picture of the two-capacitor problem with radiation.1,3,4

II. PREVIOUS STUDIES

We first summarize the main results of Boykin, Hite, a
Singh and introduce our notation, which conforms as clos
662 Am. J. Phys.72 ~5!, May 2004 http://aapt.org/ajp
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as possible to theirs.1 These authors considered the conne
ing wires between the two capacitorsC1 andC2 ~see Fig. 1!
as an electric current loop from which they derived the
diation power@via the Poynting vectorS5(E3B)/m0] in
the following formulas:

PI ,rad5KI@ Ï ~ t2r /c!#2, ~1!

KI5
pb4

6e0c5 , ~2!

whereb is the radius of the current loop andI (t2r /c) is the
retarded current of the loop~not necessarily assumed to b
sinusoidal!. Heree0 andm0 are the permittivity and the per
meability of free space, respectively, and we have include
subscriptI to denote quantities for the electric current loo
We use the following parametersC15C25200mF, b
55 cm, a50.5 mm, ,51 mm, Rw51.4 mV for the usual
wire loop to conform with earlier work unless otherwis
stated.1,3 Here a is the radius of the copper wire with wir
resistanceRw , and, is the spacing in the capacitor plates

If we use a lumped-parameter circuit model~see Fig. 1! in
which we have explicitly enclosed the capacitors in Farad
cages to exclude radiation, then the nonlinear circuit elem
X can be included to represent the impedance properties
to radiation loss.19,20 The voltage dropVX acrossX is then
given by

VX5
PI ,rad

I
5KI

Ï 2

I
, ~3!

and Kirchoff’s voltage law for this circuit implies that

VX1V22V150, ~4!

whereV1 and V2 are the voltages across the capacitorsC1

andC2 , respectively.
If we introduce a parallel capacitance,

1

Cs
5

1

C1
1

1

C2
, ~5!

and express the voltage across this capacitorCs as Vc5V2

2V152VX , we obtain the following nonlinear differentia
662© 2004 American Association of Physics Teachers
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equation@correcting a misprint in Eq.~12! in Ref. 1# for the
circuit:

V̂c
21

1

KICs
V̇cVc50. ~6!

Of particular significance is the result for the equivale
radiation resistance of the loopVX5RI ,radI given by1

RI ,rad5KIs1
45

KI
1/5

Cs
4/5, ~7!

where

s152S 1

KICs
D 1/5

, ~8!

which we will revisit many times.
There is no doubt that the derivation in Ref. 1 demo

strates that the missing energy can be accounted for ent
by radiation from the wire loop, as they have shown usin
magnetic dipole, that is, electric current loop model.8–11 We
now address the question as to what would happen if
current loop is shrunk to an infinitely small radius, or alte
natively, the wires are replaced by suitably shielded coa
transmission lines to prevent radiation. In the model of R
1 ~with Faraday shields over the capacitors included!, we
would then return to the over-idealized circuit, and as h
been pointed out, the missing energy paradox remains.3,4 In
this case, we would need to consider wire resistance2 or
self-inductance3 as the only other sinks for the missing e
ergy. This gedanken experiment shows that the analysi
capacitor radiation is necessary in the two-capacitor probl
although the radiation can be neglected if there are so
special arrangements in the experimental configuration.
do this analysis in Sec. III using a point dipole radiator a
proximation with zero length wire loops and then return
the case for which both capacitors and wire loops are
lowed to radiate.

III. OSCILLATING ELECTRIC DIPOLE MODEL

In this gedanken experiment, we remove the Fara
shields on the capacitors and reduce the wire loop to z
length. In the long wavelength (l→`) limit, the two capaci-
tors connected by zero length wires can be viewed as
oscillating electric dipole arising from time-varying charg
on the parallel plates ofCs . The power intensity of radiation
from such a dipole of momentp is given by21

PC,rad5
1

6pe0c3 up̈u2. ~9!

Fig. 1. Lumped-parameter circuit in whichX includes the nonlinear ele
ments that account for the radiation properties of the wire loop and/or
capacitors. For the analysis in Ref. 1, we have to enclose the capacito
Faraday cages~shown dotted! to prevent radiation~see the text!.
663 Am. J. Phys., Vol. 72, No. 5, May 2004
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If we consider our ideal point dipole capacitor model as t
parallel plates with separation,, we have

p̈5Q̈,5 İ ,5CsV̈c,. ~10!

Since

VX5
PC,rad

I
5

PC,rad

Q̇
5

PC,rad

V̇cCs

, ~11!

the following nonlinear differential equation replaces Eq.~6!:

V̈c
21

1

KCCs
V̇cVc50. ~12!

Equation~12! differs from Eq.~6! by having a second-orde
instead of a third-order derivative and also by the new c
stantKC :

KC5
,2

6pe0c3 . ~13!

The rest of the proof for the radiation energy follows ste
similar to Ref. 1, but in view of the differences we reprodu
them here for completeness. Equation~12! has particular so-
lutions ~apart from the trivial cases50) given by

Vc52V1,0exp~st!, ~14!

where

s5S 1

KCCs
D 1/3

expS i
~2n11!p

3 D ~n50,1,2!. ~15!

Only the n51 solution ~for real Vc) is of physical signifi-
cance. HereV1,0 is the initial voltage on the capacitorC1
prior to closing the switch.1

The calculation of the total radiation energy requires
evaluation of the integral:

Wrad
C 5E

r /c

`

PC,raddt

5KCE
r /c

` 1

KCCs
Cs

2V1,0
2 S 1

KCCs
D 1/3

3expF22S 1

KCCs
D 1/3S t2

r

cD Gdt

5
1

2
CsV1,0

2 5
1

2

C1C2

C11C2
V1,0

2 . ~16!

As we can see, the final result is identical to Ref. 1 and fu
accounts for the missing energy in the textbook Kirch
circuit. For the point dipole we now write down in a wa
similar to Ref. 1 the equivalent radiation resistance from
Ohm’s law relationVX5RC,radI , so that

RC,rad5KCs2
25

KC
1/3

Cs
2/3, ~17!

s252S 1

KCCs
D 1/3

. ~18!

We are now in a position to return to the model of Ref.
and now include the wire loop~unshielded! so that both the
wire loop and capacitors are radiation sources. The quest
now become will electromagnetic radiation account for
the missing energy as before and if so, how is this ene

e
in
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partitioned between the capacitors and the wire loop as
tennas? Before we answer these questions, it is worth no
that the point dipole model is an extreme limit of the capa
tor. Like the corresponding short current-carrying w
dipole6–11 ~as in the case of a long wire11 of order l!, the
contributions should be added vectorially for each point
pole element and then integrated over the capacitance
for a l size capacitor. The resultant radiation pattern a
impedance properties will differ from that of a point dipol
These considerations are given in Appendix A for compa
son and reference.

IV. WIRE LOOP WITH CAPACITOR RADIATORS

We now consider the more complicated gedanken exp
ment in which both capacitors and wire loops are allowed
radiate. There is one further approximation we need to m
progress. We assume that both elements do not intera
radiators.22 In this case, the power radiated by the capac
point dipole remains asPC,rad as given by Eq.~9! and the
wire magnetic dipolePI ,rad by Eq. ~1! as before. The circuit
elementX now consists of a sumX5XI1XC and the voltage
drop VX5VXI

1VXC
, where

VXI
5KI

Ï 2

I
, ~19a!

VXC
5KC

İ 2

I
~19b!

as before. The assumption of the constancy of the cur
through the system withI 5CsV̇c yields the third nonlinear
differential equation in our study:

V̂c
21

KC

KI
V̈c

21
1

KICs
V̇cVc50. ~20!

Once again we can employ the ansatz, Eq.~14!, which now
yields ~after eliminating the irrelevants50 solution as be-
fore! a quintic equation of the form:

f ~s!5s51
KC

KI
s31

1

KICs
50. ~21!

Equation~21! has only one real root~which must be nega
tive! plus two complex conjugate pairs. We can see this fr
the positivity of all the coefficients@and hencef (0).0
while f (2`),0] as well as the fact that the derivativ
f 8(s) is always positive on the real axis (s,0). None of the
complex roots are physically admissible. We do not need
obtain the explicit real solution in order to answer some
the questions posed at the end of Sec. III. We only nee
know that there exists only one real roots52s0 and that it
is negative. This fortunate result is due to the following e
ergy partition theorem which we derive.

Energy partition theorem. We first remember that with the
ansatz Eq.~14!, the power factors are given by

PI ,rad5KICs
2V̂C

2 5KICs
2s6V1,0

2 e2st, ~22a!

PC,rad5KCCs
2V̈C

2 5KCCs
2s4V1,0

2 e2st. ~22b!

We next multiply Eq.~21! by KICs
2sV1,0

2 e2st, integrate over
time, and substitute the real roots52s0 to find
664 Am. J. Phys., Vol. 72, No. 5, May 2004
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KICs
2V1,0

2 E
0

`

s0
6e22s0tdt1KcCs

2V1,0
2 E

0

`

s0
4e22s0tdt

2CsV1,0
2 E

0

`

s0e22s0tdt50. ~23!

The last term on the left-hand side of Eq.~23! is the missing
energy term and the sum of the first two terms is the to
radiated energy. We have thus shown that in this more r
istic circuit with capacitor radiation included in the model
Ref. 1, electromagnetic radiation can account for all
missing energy as before. Moreover, after evaluating the
tegrals in Eq.~23!, we obtain the energy partition theorem

1
2KICs

2V1,0
2 s0

51 1
2KCCs

2V1,0
2 s0

35 1
2CsV1,0

2 , ~24!

which shows that the radiation energy is partitioned in
ratio of the radiation resistancesRI ,rad5KIs0

4 and RC,rad

5KCs0
2 given by

k~2s0!5
RI ,rad~2s0!

RC,rad~2s0!
. ~25!

Equation~25! constitutes an important result of the ener
partition theorem. We note that the radiation resistan
RI ,rad(2s0) andRC,rad(2s0) are explicitly dependent on th
particular solutions52s0 of Eq. ~21!. This solution gener-
ally differs from s1 and s2 given by Eqs.~8! and ~18!, re-
spectively, because the latter are solutions of different dif
ential equations. Nevertheless, we see that we can ob
some reasonably good bounds without an explicit solution
Eq. ~21!. First let us define the generally positive defini
energy partition function,

k~s!5
RI ,rad~s!

RC,rad~s!
5

KI

KC
s2, ~26!

for arbitrarys. If we substitute Eq.~26! into Eq.~21!, we can
recast the latter in the following form:

k~s!5S 2
1

KCCss
321D . ~27!

Equation~27! can only be satisfied for a finite number ofs
values which are the roots of Eq.~21!. Nevertheless we can
exploit the function defined by the right-hand side~RHS! of
Eq. ~27!. We shall refer to this function as the constrain
k(s) while the function defined by the RHS of Eq.~26! shall
be referred to as the unconstrainedk(s), to avoid having to
introduce extra notations. Both functions generally cont
different information, but they must coincide at the roots
Eq. ~21!. Unless otherwise stated,k(s) @and x(s) to be in-
troduced later# will be understood to be the constrained fun
tion by default.

A plot of the constrained functionk(s) is a powerful way
to visualize the significance of the radiation and also to lo
for where the root,2s0 , must lie, because the physical r
gions requirek(s)>0. For instance, we note that the deriv
tive of Eq. ~27!,

k8~s!.0, ~28!

for all s including the solutions5s352s0 . This result is
important and is opposite to the unconstrained function
~26!. We note that the minimum value ofk is given by
k(s2)50 and the maximum value isk(0)5`. Hence the
664T. C. Choy
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root s3 must be between@s2,0# ~see Fig. 2!. We will be
tempted to estimatek(s3) from k(s1), because it is an in-
creasing function ofs from s2 to the origin@see Eq.~28! and
Fig. 2#. Note also thats2,s1 for the cases we consider, du
to the point dipole limit,!b. We see thatk(s1) is in fact
quite an accurate guess fork(s3) as follows.

If we now look again at the functionf (s) in Eq. ~21!
whose derivative is positive definite, we havef (s2)
52(KICs)

25/3,0 and f (0)5(KICs)
21.0. If we note that

f (s1)52(KC /KI)(KICs)
23/5,0 and f 8(s).0, we see that

the exact root must be in the interval@s1,0#. We can do

better by successively halving the interval to@s1 , 1
2s1# be-

causef ( 1
2s1).0 and then to@s1 , 3

4s1# and so on until the
function f (s) is negative again. Thus the estimatek(s1) is a
lower bound whilek(0.95s1) is an upper bound in terms o
the significance of the capacitor radiation.

In Table I we tabulate these estimated values ofk(s3) for
the wire loop, in which we vary the value of the capacitan
Cs . For completeness, we have provided the exact valuek
derived from a numerical solution of Eq.~21!, showing that
the lower bound is quite accurate.

We note that capacitor radiation constitutes about 6.8%
the wire loop for Cs5100mF to about 17.1% forCs

51000mF. Clearly the significance of capacitor radiatio
increases withCs , even in the point dipole limit. Thus th

Fig. 2. Plot ofk(s) vs s for the usual wire loop. The dark spot on thes axis
denotes the value ofs152(K1Cs)

21/5, which is very close to the exact roo
~see the text!.

Table I. Bounds for the ratio of radiation resistancesk(s3) vs the capaci-
tanceCs for the usual wire loop, compared to the exact value obtained fr
numerical solutions of Eq.~21!.

Cs (mF) k lower kexact kupper

100 13.558 13.618 15.980
200 10.033 10.093 11.868
300 8.381 8.441 9.941
400 7.361 7.421 8.752
500 6.647 6.707 7.920
600 6.109 6.170 7.292
700 5.684 5.744 6.796
800 5.337 5.397 6.391
900 5.045 5.105 6.051

1000 4.795 4.856 5.760
665 Am. J. Phys., Vol. 72, No. 5, May 2004
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of

neglect of capacitor radiation in a realistic model will requ
some special arrangements, such as the Faraday cages
duced in Fig. 1.

V. SELF-INDUCTANCE

We now improve our gedanken experiment further by co
sidering the self-inductance of the loopL.19 This consider-
ation leads to

V̂c
21

KC

KI
V̈c

21
L

KI
V̈cV̇c1

1

KICs
V̇cVc50, ~29!

which can be treated as before. The modified quintic eq
tion becomes

f ~s!5s51as31bs21g50, ~30!

where for convenience we definea5KC /KI , b5L/KI , and
g51/(KICs). Once again the physically admissible real s
lutions must be negative. Although the derivativef 8(s) is no
longer positive definite, it is nevertheless monotonic@be-
causef 9(s)50 does not contain any real solutions# and it is
a principal cubic~i.e., one that does not contain a quadra
term!.23 The turning points off (s) is thus determined by

f 8~s!5s31 3
5as1 2

5b50, ~31!

which admits only one real negative solution ats5x0 , where

x05
251/3a1~25b1A5Aa315b2!2/3

52/3~25b1A5Aa315b2!1/3
. ~32!

Since f 8(s)50 has only one root, and thereforef (s) has
only one turning point, thenf (s)50 can have at most two
negative real roots. Two real roots are impossible for a qu
tic because the remaining complex roots must come in c
jugate pairs. Hence we are left with only one real negat
root (s5s452s0) as before, which must satisfy the energ
partition theorem:

1
2KICs

2V1,0
2 s0

51 1
2KCCs

2V1,0
2 s0

32 1
2LCs

2V1,0
2 s0

25 1
2CsV1,0

2 .
~33!

The negative sign on the inductor energy requires an in
pretation. For now we assume that the negative sign imp
that some of the missing energy is being stored in the ind
tor. We can define the unconstrained energy partition fu
tion x(s) as:

x~s!5
KIs

41KCs2

2Ls
, ~34!

which compares the ratio of the total radiated energy to
energy transferred to the inductor.24 If we use Eq.~34!, we
can do some simple manipulations to show that Eq.~30! now
implies that the constrained functionx(s) is given by

x~s!511
1

LCss
2 , ~35!

which shows thatx(s) is a positive definite function, whos
derivative also is positive fors,0.

We can see the power of plotting the constrained funct
in Eq. ~35! instead of the unconstrained function in Eq.~34!.
We have already derived an important result for electrom
netic compatibility~EMC!,16 because the minimum value o
x in this case isx~2`!, which is unity. Thus at least half th
665T. C. Choy
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missing energy must be radiated.25Although the lower bound
for x(2s0)51, we can easily improve on this bound b
noting thatf 9(0).0 at the trivial turning points50, that is,
f (0) is a local minimum. Also at the turning points5x0 , we
have f 9(x0)515x0

313ax0,0, that is,f (x0) is a maximum.
The effect of the quadratic term in Eq.~30! is to move the
root 2s0 away from the origin towards1 and beyond de-
pending on the magnitude ofL. For sufficiently largeL the
root can even move beyonds2 , which is in fact our case. We
can estimatex(2s0) using the turning points5x0 as an
upper bound which improves on the lower bound of un
However, this bound is extremely close to unity becau
x(x0)5113.704310210 for the usual wire loop. These con
siderations are supported by numerical examples as in Re
where it was found that forL51 mH, Cs50.5mF, R50,
KC50, andb55 cm, the roots0518.712 (ns)21, and hence
x(2s0)511(5.71231029). For completeness we give th
values for the usual wire loop parameters withCs

5100mF, and we find numerically thats0512.665 (ns)21

and hencex(2s0)511(2.011310210). Although inconse-
quential for the usual wire loop, the boundx(x0) will be
useful for smaller values ofL.

The alert reader might have spotted some difficulties
the caseLÞ0. These difficulties arise because our ansatz
~14! fails to satisfy the initial boundary conditionI (0)50,
since with an inductor present, the current cannot cha
abruptly. Given that there is only one solution fors, we are
further unable to construct a linear combination of solutio
that will give the correct boundary conditions, quite unli
the standardLCR circuit.2,3,6 Our solution therefore entails
further assumption of overdamping by radiation in which t
initial current will appear to be discontinuous over tim
scalest that are much greater than a fewL/Rrad. This timet
is the order of a few microseconds in our case for the par
eters we have used.

Another difficulty is that our inductor ends up with a n
energy which we earlier interpreted as stored energy. T
behavior is unlike the simpleLCR circuit2,3,6 ~see also Ap-
pendix B!, and it is impossible in a transient situation. Th
Eq. ~14! is not a solution for the transient switching problem
If there is more than one real root present~see Sec. VI!, we
may hope that our difficulties can be resolved by an app
priate linear combination of these solutions as in theLCR
circuit.2,3,6 Unfortunately, we will see that such a linear com
bination does not provide a solution either. The unrealis
behavior appears to be yet another idealization associ
with the point dipole approximation~see Appendix B!.

VI. SELF-INDUCTANCE PLUS RESISTANCE

For the bare 5-cm wire loop, the wire resistance is in g
eral quite negligible,Rw51.4 mV, so that the analysis o
Sec. V suffices. For the caseKC50 some numerical result
have been presented in Ref. 1 for various values of additio
resistanceR corresponding to the underdampedR!Rcr

5A4L/Cs and overdampedR@Rcr cases. The latter reduce
to a conventionalLCR circuit for which radiation is sup-
pressed. However, exactly how this suppression takes p
is somewhat obscure from a numerical solution. Hence
calculations in this section will help supplement earl
work1,3,4 through the use of the constrained energy partit
function.
666 Am. J. Phys., Vol. 72, No. 5, May 2004
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We are especially interested in the minimum value ofR
such that radiation is suppressed.26 An analysis of the func-
tion

f ~s!5s51as31bs21rs1g50, ~36!

with r5R/KI is quite complicated. However, we shall se
that it can have at most three negative real roots, and thu
essentially a cubic. We observe thatf 8(s) is a fourth-order
polynomial with f 8(0).0 and f 8(2`).0, but f 9(s) is a
cubic that can have only one negative real rootl0 , for which
f 8(l0) is a minimum. Thus iff 8(l0).0, then f (s) has no
turning points, that is,f (s) has at most one root. Iff 8(l0)
,0, then f (s) has two turning points and hence it can ha
at most three roots. However, not all real negative roots
of equal importance to radiation.

The energy partition function is an extremely powerf
tool, even an analysis of the quartic functionf 8(s) is non-
trivial. To proceed further, we will need some nontrivial ge
eralizations of the energy partition theorem for the multi-ro
case, which unfortunately we have not been able to so
~see Appendix B!. Nevertheless, we continue as before, be
ing in mind that our solution will not satisfy the transie
boundary conditions att50.

We can by analogy with the previous cases define the
constrainedx(s) as:

x~s!5
s41as2

2bs1r
5

KIs
41KCs2

2Ls1R
, ~37!

and again from the associated fifth-order equation we de
the constrained function as:

x~s!52S b~s2w1!~s2w2!

2bs21rs D52S Ls1R1
1

Css

2Ls1R
D ,

~38!

wherew1 andw2 are the roots of theLCR circuit:

w1,252
r

2b S 16A12
4bg

r2 D
52

R

2L S 16A12
4L

CsR
2D . ~39!

The negative sign in Eq.~38! is very important because i
shows that there are regions ofs that are physically unimpor-
tant to radiation. We have fors→0, x(s)→`; also x(s)
→1 for s→2` just as in Eq.~35!. However, there is now a
turning point forx(s) given by

z5
2AL2AL12CsR

2

2CsALR
, ~40!

which is a minimum~see Fig. 3!. Thus in the overdamped
caseR.Rcr we have a rangew1,s,w2 wherex(s),0 lies
in an unphysical region in which radiation may be eliminat
if the root moves into this range. In the underdamped c
this possibility does not exist. However, radiation cannot
completely suppressed even forRcr,R,Rm . Our problem
is to determineRm and to see howx(s) behaves asR
→Rm . To do this we exploit the further use ofx(s) as fol-
lows.

We first write Eq.~36! in the form:
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f ~s!5s3g~s!1b~s2w1!~s2w2!50, ~41!

whereg(s)5s21a is a positive definite monotonic functio
of s. Hence for our purposes it serves merely as a varia
positive cubic coefficient, which implies thatf (s) is essen-
tially a cubic as noted. From the definition of the constrain
function in Eq.~38! we can further rewritef (s) as:

f ~s!5s3g~s!2sx~s!~2bs1r! ~42a!

5s2g~s!2x~s!~2bs1r!50. ~42b!

The last step follows becauses50 cannot be a solution
Equation~42b! now has the form of a quadratic whose roo
are given by

s5 f̄ ~s!5
2bx~s!2Ab2x~s!214rg~s!x~s!

2g~s!
, ~43!

where the positive square root is inadmissible. Equation~43!
is extremely useful for finding the roots, because by plott
y5s andy5 f̄ (s), the root is easily found from the interse
tion. This procedure is also numerically very accurate,
cause the order of magnitude off̄ (s) ands is almost identical
in the region of the roots. The same cannot be said of a
of f (s) vs s. As x(s) varies, the roots of Eq.~43! will in
general develop from our earlier rootss4 andw1 . However
there is also a third root close tow2 , which for largeR
moves toward the region wherex(s) is unphysical, see Eq
~38!. These results can be shown by studying the vari
limits r→0, g(s)→0, and in particular, the limitr→` for
which analytical results are obtainable~see the following!.

In Fig. 4 we plot f̄ (s) for the usual wire loop parameter
The valueR51.643104Rcr'1826V, whereRcr'0.111V
is now very close to the minimum valueRm above which
radiation becomes insignificant. The roots are found to bs
528.663 (ns)21, 27.253 ~ns!21, and 20.548
31028 (ns)21 for which the values ofx are x50.190,
0.104, and 6.348310210, respectively. However even fo
this large value ofR, radiation is suppressed but is n
negligible.27 To reduce radiation to a negligible level, th
value of R should be closer toRm'1.683104Rcr'1871V
so that the only remaining root fors is close tos5w2 for
which radiation is negligible. Hence the change occurs o
a rather small range ofR within about 2.5% ofRm with the
unfortunate fact that some 104 times the resistance ofRcr or
106 times the resistance ofRw is required to suppress radia

Fig. 3. Plot ofx(s) vs s for the usual wire loop when it is just overdampe
with R51.04Rcr . We show that in this case,x(s),0 near its turning point.
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tion to a negligible level. This sharp transition behavior d
fers from the caseL50, KC50 ~and henceRcr50) for
which numerical results have already been presented in
1 ~see their Fig. 5!. By using the constrainedx(s) method
presented here, we can show analytically from Eq.~43! that
x(2s0) ~which in that case is equivalent to the ratio
Rrad/R) vanishes asR increases near the transition region

x~2s0!5
KI

5KI1R5Cs
4 . ~44!

Thus our results show that the suppression of radiation u
a damping resistorR in the more realistic circuit may not b
a practical solution for power supply applications.

VII. CAPACITOR ANTENNAS

There have been recent controversies in the enginee
community about certain capacitor antennas patented in
U.S. and Great Britain, that purport to use Poynting vec
synthesis for their operational principles. The owners
these patents claim that their invention produces the Po
ting vector from crossedE andB fields directly at the source
and cancels all near fields.17,18These antennas are now com
mercial products that have produced contradictory results
medium frequency broadcast applications. Although we
not subscribe to the theory of Poynting vector synthesis,
analysis in Sec. VI shows that capacitor radiation is a rea
and therefore a capacitor antenna may be possible. A fi
size capacitor antenna constructed from two circular m
plates will ~depending on frequencies! have impedance char
acteristics that differ from a point electric dipole. Such
antenna may be modeled as an appropriate~perhaps quite
complicated! magnetic current loop~see Appendix A!.9–11,28

We are now not interested in suppressing the radiation, bu
minimizing nonradiative losses. In addition, an anten
needs to focus all of its radiation in the desired operat
frequency range, because stray radiation will be a sourc
EMC problems.

The detailed study of such an antenna is complicated,
we will not pursue it here. A preliminary comparison of r
diation efficiency, though, can be obtained by noting that
a sinusoidally driven current, the imaginary switching fr
quency parameters can be replaced by the real angular fr
quencys→ iv (v52p f ).9–11 In this case the radiation ef
ficiency can be determined by comparing the radiat
resistances of the capacitor and the wire loop, if both syste

Fig. 4. Plot of f̄ (s) vs s for the usual wire loop when it is heavily over

damped withR51.643104Rcr . We see that there are two roots whenf̄ (s)
intersects the line of unit slope~dotted! @see Eq.~43!#.
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are driven by identical signal sources that are optima
matched for power transfer.9–11 For a small size capacito
antenna~typically of radiusa!l/10), the ratio of its radia-
tion resistance compared to the small wire loop is now giv
by @see Eqs.~8! and ~18!#

kC,I5
KCv2

KIv
4 5

,2l2

4p4b4 . ~45!

For the point dipole approximation we require,!l and b
!l. A practical system would also have,!b such as,
5b/10 andb5l/10. With these parameters,kC,I51/(4p4)
'2.5731023, which makes the capacitor a rather poor a
tenna in comparison to the wire loop.

For larger size systems other considerations become
portant, which we will not discuss here~see Appendix A!.
Wire antennas, for example, resonate at the operating
quency by making use of the free space capacitance lea
to the approximate formula:29

Ldipole'
143

f
, ~46!

for the length of a thin wire half-wave dipole antenna
meters, with the frequencyf in MHz. Equation~46! is accu-
rate up to about 100 MHz. In the same way, capacitor an
nas can resonate using the free space inductance. The
mula corresponding to Eq.~46! for the capacitor antenna
including its relative performance, would be an interest
research project for a graduate student. For practical sys
a lumped-parameter circuit analysis including the pro
self-inductanceL as well as other stray inductances would
needed.19 However modern PSpice software30 and other an-
tenna modeling software31 do not include the radiation resis
tance from the capacitors discussed here, so some care n
to be exercised in their use.

VIII. CONCLUSION

We have extended the discussion of the radiation from
transient switching of charges between two capacitors.
have shown that the capacitors themselves can radiate, u
a point electric dipole model. We found this radiation to
small but not insignificant, and hence an extension of
lumped-parameter circuit model of Ref. 1 was also p
sented. We then included the self-inductance and an exte
resistanceR, showing that a minimum valueRm , which must
be approximately 106 times the wire resistanceRw , is
needed to suppress the radiation. The exact value is crit
and we developed an accurate numerical procedure to ex
this parameter using the constrained energy partition fu
tion x(s).

Exactly how much radiation a commercial capacitor ra
ates will depend on its effective inductance, resistance,
dielectric properties.32,33 The calculation of the radiation
would be a good exercise for an undergraduate student u
the methods developed here. Our results show that altho
the details of the capacitor radiators are unimportant for
recovery of the missing energy, they are important for
study of the transient response and electromagnetic com
ibility. Unfortunately, further difficulties remain for the cas
LÞ0, due to the failure of our solutions to satisfy the boun
ary conditions required for transient behavior at the init
time ~see Appendix B!.
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Antenna theory is an interesting topic with instructive a
ticles published previously.34,35 Some of the results obtaine
in this paper may be useful additions to modern texts
electromagnetism and antenna theory. The implications
our study for EMC directives and for novel antenna desig
are topics for further research. Students should be taugh
appreciate that there is much more to meet the eye than
simple capacitors.
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APPENDIX A: RADIATION PROPERTIES OF A
FINITE SIZE CAPACITOR ANTENNA

In this appendix we provide some preliminary studies o
finite size air-spaced capacitor antenna. The capacitor is
sumed to be made of two circular discs of radiusa (a;l)
with separation,!l. As far as the author is aware, th
elementary results presented here are not found in stan
texts.6–11 The key assumption is that there is a unifor
charge area densitys on the disc, that is,Q5pa2s ~see Fig.
5!. Just as for case of a large current loop, the ability
maintain a uniform charge density at finite frequencies
quires the introduction of a rather sophisticated type of ph
shifters,11 the details of which we will not be concerned wit
here. For an elementary discussion of why a capacit
charge density cannot be uniform at high frequencies,
for example, Ref. 28. In a more sophisticated model,s~r!
has to be determined self-consistently with the fieldE, al-
though some approximate charge distribution may suffice
in the wire antenna.

We assume a sinusoidal charge oscillation of the ty
q(t)5q0 cosv(t2r/c) for each area element that forms th
infinitesimal dipoledpz5s,drrdf. Then in a plane cutting
through a pair of opposite dipole elements, the radiationE
field at a distant pointP at (r ,u,f) will be a sum of two
components given by10–12

dEu5dEu
0eic/21dEu

0e2 ic/252dEu
0 cosc/2, ~A1!

wheredEu
0 is the field due to each dipole element,

dEu
05

s,drrdf

4pe0

v2

rc2 sinu cosv~ t2r /c!. ~A2!

The relative phase shiftc is due to the path difference~see
the insert to Fig. 5! and is given by

c52br sinu, ~A3!

whereb5v/c. We also can easily obtain theH field in the
radiation zone because it is simply given by

dHf5
dE0

Z0
, ~A4!

whereZ05Am0 /e0'377V is the impedance of free spac
An integration overf from 0 to p is trivial ~note a full 2p
integration would double count!. The integral overr from 0
to a is also trivial with the final result:
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Fig. 5. Radiation fields from a finite
size capacitor antenna. The inse
shows the path difference between
diametrically opposite pair of dipoles
on the disc to a distant pointP.
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2e0r Fba sin~ba sinu!1
1

sinu
cos~ba sinu!

2
1

sinuGcosv~ t2r /c!. ~A5!

For ba→0 we easily recover the point dipole limit,

Eu
05

s,v2a2

4e0rc2 sinu cosv~ t2r /c!. ~A6!

The radiation pattern of our antenna which can be obtai
from Eq. ~A5! is I (ba,u)5uEuu2/Z0 and can be easily com
pared with a point dipole, which as can be seen in Eq.~A6!
is proportional to sin2 u. Unfortunately, calculating the tota
radiated power involves difficult integrals overu, and we
will not pursue this calculation further. The calculation of t
self-impedance would be even more complicated than
for the wire antenna.9–12,15

APPENDIX B: THE MULTI-ROOT CASE AND
DIFFICULTIES WITH TRANSIENT BOUNDARY
CONDITIONS

If we assume that we have three real rootss5j i , i
51,2,3 ~remember that we can only have either one or thr!
for Eq. ~36!, we can construct a linear combination from t
solutions as:

Vc~ t !5Aej1t1Bej2t1Cej3t. ~B1!

The appropriate boundary conditions areVc(0)52V1,0 and

I (0)5CsV̇c(0)50. However Eq.~29! is a third-order differ-
ential equation. Hence one further boundary condition is n
669 Am. J. Phys., Vol. 72, No. 5, May 2004
d

at

c-

essary, which we may choose asİ (0)5CsV̈c(0)50. For
comparison, note that the simpleLCR circuit has only the
first two boundary conditions because it has just two roo
The resulting 333 matrix is quite involved so we shall no
discuss this further. Moreover, we do not need to pursue
calculation to see that it would not work. This procedure fa
because Eq.~29! is a nonlinear differential equation. Th
substitution of the solution Eq.~B1! will produce cross terms
that do not cancel~see also Appendix B in Ref. 1!. The
reader might think that a numerical integration of Eq.~29!
could produce the appropriate transient solution. Once ag
he/she will be disappointed because the nature of Eq.~29!
with the required boundary conditions:Vc(0)52V1,0,

I (0)5CsV̇c(0)50 is incompatible with any real value fo
the higher derivatives~including zero! at t50. This incom-
patibility can be seen by examining the Taylor series ofVc(t)
near the origin of timet50. Hence any numerical integratio
scheme would fail to generate a real solution. These diffic
ties appear to be due to the point dipole approximation.

Nevertheless, we can easily see that all the missing en
must be dissipated in the resistancesRI ,rad, RC,rad, andR, as
it should be. This result follows once again from the ene
partition theorem, because by multiplying Eq.~29! by Cs

2

and integrating, we have

Cs
2E

0

`

dtS KIV̂c
21KCV̈c

21LV̈cV̇c1RV̇c
21

V̇cVc

Cs
D

5Cs
2E

0

`

dt~KIV̂c
21KCV̈c

21RV̇c
2!2

1

2
CsV1,0

2 50. ~B2!
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The second line in Eq.~B2! follows from

EL5E
0

`

LIİ dt5
1

2
LI 2u0

`50,

~B3!
EC5E

0

`

CsVcV̇cdt5
1

2
CsVs

2u0
` ,

for a proper transient solution in whichI (0)5I (`)50. This
conclusion means that for the caseR50 but LÞ0, all the
missing energy must be radiated, and our results are th
fore inadequate.

In view of these difficulties, a generalization of the co
strained partition function for the transient situation wh
LÞ0 seems to be nontrivial. The analysis shows again
the two-capacitor problem with radiation still remains e
sive.
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