Capacitors can radiate: Further results for the two-capacitor problem
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Using a point dipole radiator approximation, we extend the study of Boykin, Hite, and SAmgh

J. Phys70 (4), 415-420(2002] by considering electromagnetic radiation from both the capacitors
and the wire loop to account for the missing energy in the popular two-capacitor Kirchoff circuit.
Through a series of gedanken experiments in which successively more realistic circuit elements are
added, we assess the significance of electromagnetic radiation in accounting for all the missing
energy. Extensive use is made of an energy partition function to obtain many results without an
explicit solution of nonlinear differential equations. However some difficulties remain, which are
posed by the required boundary conditions when an inductamcecluded. Implications for radio
frequency interference, as well as novel antenna designs are also discusseoh4 @nerican
Association of Physics Teachers.
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[. INTRODUCTION as possible to theirsThese authors considered the connect-

; ; - ; ing wires between the two capacita@s andC, (see Fig. 1
In a recent paper, Boykin, Hite, and Sirigtonsidered the as an electric current loop from which they derived the ra-

two-capacitor problem with radiation using an electric cur-> © ) } . .
rent loop model from which they recovered the missing endiation power[via the Poynting vectoS=(EXB)/x,] in

ergy in the traditional Kirchoff circuif. The circuit appar- the following formulas:

ently violates energy conservation when one capacitor is P, K [i(t—r/c)]? )
suddenly switched to transfer charge to another. This paradox = '@ ™! '
had been discussed previously without a quantitative wb?

treatment of radiation. Reference 1 brought to light the sig- K':F’ (2
nificance of radiation, which can in certain circumstances €oC

account for all the missing energyith apologies for the whereb is the radius of the current loop ah¢t—r/c) is the
pun). In this paper we examine the significance of the radiaretarded current of the loofnot necessarily assumed to be
tion further and show explicitly that there is radiation from sjnyspidal. Heree, and u are the permittivity and the per-
the capacitors that was not considered in Ref. 1. We showheability of free space, respectively, and we have included a
that the neglect of capacitor radiation requires some specialpscriptl to denote quantities for the electric current loop.
arrangements, which could be realized by enclosing each cgye yse the following parameter€,=C,=200uF, b
pacitor in a Faraday cage for example, and cannot be autq- g cm, a=0.5mm, £=1 mm, R, =1.4 ) for the usual
matically obtained by going to a smdlis compared to the wire loop to conform with earlier work unless otherwise

radius of the wire looppoint dipole limit. : stated'® Here a is the radius of the copper wire with wire
The capacitor dipole radiator, in which the displacement . : L ;
resistanceér,,, and{ is the spacing in the capacitor plates.

current replaces the electron current of a wire dipole radia- L . .
P P If we use a lumped-parameter circuit modste Fig. 1in

tion source, is not usually discussed in many standard texts, . ey : ;
on electromagnetist® and in particular antenna thedty!! which we have explicitly enclosed the capacitors in Faraday

The exception is Schelkundf:*233who highlighted the du- cages to exclude radiation, then the nonlinear circuit element
ality of magnetic dipole radiation due to a physical electric® car&_bg '“Cl'“dgg‘?'zgoTLepresle”t thde impedance ;p(rppe;hes due
current loop and the electric dipole radiation due to a ficti-1© "adiation loss. e voltage dropVy acrossX is then

tious magnetic “charge” current loop in his treatméht>  9iven by

Schelkunoff’'s seminal biconical anteAa®is perhaps one

of the few exactly solvable antenna models that also demon- v, =

strates capacitor radiation. |
The importance of direct radiation from capacitors has im-nq irchoff's voltage law for this circuit implies that

portant implications for radio frequency interfererffelt

also is an important issue for alternative nonconventional Vx+V,—V;=0, (4)

antenna designs, currently hotly debated in both the engi- .

neering and gmateur radic))/ Iiterzi(t&?el.8 It is further hoped YWherev, and V2 are the voltages across the capacitGs

that this paper will help to clarify the basic physics involved 81dC2, respectively. _

in these alternative antennas and to provide a more complete If We introduce a parallel capacitance,

picture of the two-capacitor problem with radiatibf? 1 1 1

=K ®

—==+=, 5
Il. PREVIOUS STUDIES Cs C1 Gy

We first summarize the main results of Boykin, Hite, andand express the voltage across this capa&pasV .=V,
Singh and introduce our notation, which conforms as closely-V;=—Vy, we obtain the following nonlinear differential
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X If we consider our ideal point dipole capacitor model as two

E/ S — parallel plates with separatiofy we have
-d---x ——Fm- 2 . . ..
cu ‘: :’ : P=Qe=1£=CyV(. (10
“-""“' \‘|"“" Since
P P P
L VX: C,rad: C-,rad: -C,rad, (11)
) ! Q Vs

Fig. 1. Lumped-parameter circuit in whick includes the nonlinear ele- t

ments that account for the radiation properties of the wire loop and/or the

capacitors. For the analysis in Ref. 1, we have to enclose the capacitors in 1 .

Faraday cage&hown dottefito prevent radiatiorfsee the text Vg—l— ﬁVCVC: 0. (12)
cYs

. _ o _ Equation(12) differs from Eq.(6) by having a second-order
equation[correcting a misprint in Eq(12) in Ref. 1] for the  instead of a third-order derivative and also by the new con-

he following nonlinear differential equation replaces Ej:

circuit: StantKC :
P4 V=0 (6) e
R, Ve Ve O e 9
Of particular significance is the result for the equivalentThe rest of the proof for the radiation energy follows steps
radiation resistance of the l0dfx=R, (.d given by similar to Ref. 1, but in view of the differences we reproduce
K 1/5 them here for completeness. Equati@2) has particular so-
R, ra= K si‘zc—il,-, (7)  lutions (apart from the trivial case=0) given by
s V.= —V, gexp(st), (14
where ’
1 15 where
S;= —( ) , (8) 1\ (2n+1)m
K,C = j— =
1Cs S K<C. exp i 3 (n=0,1,2). (15

which we will revisit many times.

There is no doubt that the derivation in Ref. 1 demon-Only then=1 solution(for real V) is of physical signifi-
strates that the missing energy can be accounted for entirelyance. HereV, o is the initial voltage on the capacitd,
by radiation from the wire loop, as they have shown using gprior to closing the switch.
magnetic dipole, that is, electric current loop motiét We The calculation of the total radiation energy requires the
now address the question as to what would happen if thevaluation of the integral:
current loop is shrunk to an infinitely small radius, or alter- "
natively, the wires are replaced by suitably shielded coaxial WCdZJ Pc ragdt
transmission lines to prevent radiation. In the model of Ref. e Jue
1 (with Faraday shields over the capacitors includede 13
would then return to the over-idealized circuit, and as has —K J 1 c2y2 ( 1 )
been pointed out, the missing energy paradox remins. c s
this case, we would need to consider wire resistarue

self-inductancgas the only other sinks for the missing en- Xexp{ _2( 1 )1/3(t_ [) dt

ergy. This gedanken experiment shows that the analysis of KcCy c

capacitor radiation is necessary in the two-capacitor problem,

although the radiation can be neglected if there are some =EC 2 1 CiCo Vio (16)

special arrangements in the experimental configuration. We 2 sV10T 2 C,+Cy

do th's a'nalys!s in Sec. il using a point dipole radiator aP"As we can see, the final result is identical to Ref. 1 and fully
proximation with zero length wire loops and then return to

the case for which both capacitors and wire loops are algccopnts for the missi'ng energy in thg tEthOOI.( Kirchoff
lowed to radiate circuit. For the point dlp_ole we now write QOwn in a way
' similar to Ref. 1 the equivalent radiation resistance from the
Ohm’s law relationVy=Rc¢ (od , SO that
[ll. OSCILLATING ELECTRIC DIPOLE MODEL

Kl/S
In this gedanken experiment, we remove the Faraday Rc rac™ KcS§=C—§r. (17)
shields on the capacitors and reduce the wire loop to zero s
length. In the long wavelength\ (- «) limit, the two capaci- 1 \18
tors connected by zero length wires can be viewed as an SZ:_(KCCS) (18

oscillating electric dipole arising from time-varying charges . N
on the parallel plates af. The power intensity of radiation ~ We are now in a position to return to the model of Ref. 1

from such a dipole of moment is given by and now include the wire loofunshielded so that both the
wire loop and capacitors are radiation sources. The questions
P. = 1B|2. (9 how become will electromagnetic radiation account for all
Crad™ 6 reqc® the missing energy as before and if so, how is this energy
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partitioned between the capacitors and the wire loop as an- o o

tennas? Before we answer these questions, it is worth notirﬂ@CgViof sge” 2oldt+ chgViof spe 2ot

that the point dipole model is an extreme limit of the capaci- 0 0

tor. Like the corresponding short current-carrying wire P

dipolé~* (as in the case of a long witeof order\), the —CSViOf Spe” 2%tdt=0. (23

contributions should be added vectorially for each point di- 0

pole element and then integrated over the capacitance arq@e |ast term on the left-hand side of Eg3) is the missing

for a A size capacitor. The resultant radiation pattern ancknergy term and the sum of the first two terms is the total

impedance properties will differ from that of a point dipole. radiated energy. We have thus shown that in this more real-

These considerations are given in Appendix A for compariistic circuit with capacitor radiation included in the model of

son and reference. Ref. 1, electromagnetic radiation can account for all the
missing energy as before. Moreover, after evaluating the in-
tegrals in Eq{(23), we obtain the energy partition theorem:

IV. WIRE LOOP WITH CAPACITOR RADIATORS 1K, CBV2 3+ 1K CAV2 3= 1CV2 (24)

We now consider the more complicated gedanken experiwhich shows that the radiation energy is partitioned in the
ment in which both capacitors and wire loops are allowed taatio of the radiation resistance®, ,.¢=K;s§ and Rc ag
radiate. There is one further approximation we need to make- Kcs2 given by
progress. We assume that both elements do not interact as
radiators?? In this case, the power radiated by the capacitor R rad —So)
point dipole remains af¢ .4 as given by Eq(9) and the K(=So) = Re rad —So)
wire magnetic dipoleP, .4 by Eq. (1) as before. The circuit ’
elementX now consists of a surd= X, + X and the voltage
dropVX=VXI+VXC, where

(25

Equation(25) constitutes an important result of the energy
partition theorem. We note that the radiation resistances
R| rad —So) andRc¢ ;ad —Sp) are explicitly dependent on the

2 particular solutions= —s; of Eq. (21). This solution gener-
VXI=K,|—, (199 ally differs froms; ands, given by Eqgs.(8) and (18), re-
spectively, because the latter are solutions of different differ-
12 ential equations. Nevertheless, we see that we can obtain
V.= KCI_ (19b some reasonably good bounds without an explicit solution of

Eq. (21). First let us define the generally positive definite
as before. The assumption of the constancy of the currer@nergy partition function,

through the system with=C.V, yields the third nonlinear RiadS K
differential equation in our study: K(S)=5— =S5 26
i ial equation in our study ( RerdS Ko (26)
V24 &'\'/ZJF LV V.=0. 2 for arbitrarys. If we substitute Eq(26) into Eqg.(21), we can
c c cVe 0 ( 0)
K, KiCs recast the latter in the following form:
Once again we can employ the ansatz, @4), which now 1
yields (after eliminating the irrelevargs=0 solution as be- K(S):( - m—l ) (27)
fore) a quintic equation of the form: ctsS
K Equation(27) can only be satisfied for a finite number ®f
f(s)=s"+ —C3y =0. (21 values which are the roots of E(21). Nevertheless we can
Ki KiCs exploit the function defined by the right-hand sidRHS) of

Equation(21) has only one real roofwhich must be nega- Ed. (27). We shall refer to this function as the constrained
tive) plus two complex conjugate pairs. We can see this fromk(s) while the function defined by the RHS of EQ6) shall

the positivity of all the coefficient§and hencef(0)>0  be referred to as the unconstrainefs), to avoid having to
while f(—»)<0] as well as the fact that the derivative introduce extra notations. Both functions generally contain
f'(s) is always positive on the real axis<0). None of the different information, bu_t they must coincide at the ro_ots of
complex roots are physically admissible. We do not need té&d- (21). Unless otherwise stated(s) [and x(s) to be in-
obtain the explicit real solution in order to answer some oftroduced latefwill be understood to be the constrained func-
the questions posed at the end of Sec. Ill. We only need t§on by default.

know that there exists only one real raot —s, and that it A plot of the constrained functior(s) is a powerful way
is negative. This fortunate result is due to the following en-to visualize the significance of the radiation and also to look
ergy partition theorem which we derive. for where the root—sy, must lie, because the physical re-
Energy partition theoreme first remember that with the gions requirex(s)=0. For instance, we note that the deriva-

ansatz Eq(14), the power factors are given by tive of Eq. (27),

P rac= K| C2VE=K CZstV] £, (229 Kk'(s)>0, (28)

Pc ra= KcC2V2 =K cC2s4V2 25t (22b) for all s including the solutions=s;=—s,. This result is

, S S , )

_ o . important and is opposite to the unconstrained function Eq.
We next multiply Eq.(21) by K,CZsV; £, integrate over (26). We note that the minimum value of is given by
time, and substitute the real rost — s, to find k(sp;)=0 and the maximum value ig(0)=c. Hence the
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Fig. 2. Plot ofk(s) vssfor the usual wire loop. The dark spot on thaxis
denotes the value & = — (K,C.) ~*®, which is very close to the exact root
(see the tejt

root s; must be betweeis,,0] (see Fig. 2 We will be
tempted to estimata(ss) from «(s;), because it is an in-
creasing function o$ from s, to the origin[see Eq(28) and
Fig. 2]. Note also thas,<s; for the cases we consider, due
to the point dipole limitf <b. We see thak(s;) is in fact
quite an accurate guess fefs;) as follows.

If we now look again at the functiori(s) in Eq. (21)
whose derivative is positive definite, we havEs,)
=—(K,Cq) ~®*<0 andf(0)=(K,Cs) "*>0. If we note that
f(s1)=—(Kc/K))(K,Cs) "¥<0 andf’(s)>0, we see that
the exact root must be in the intervi$;,0]. We can do
better by successively halving the interval [ts;,3s;] be-

causef(3s;)>0 and then tds,;,3s,;] and so on until the
function f(s) is negative again. Thus the estimates;) is a
lower bound whilex(0.9%,) is an upper bound in terms of
the significance of the capacitor radiation.

In Table | we tabulate these estimated value ;) for

the wire loop, in which we vary the value of the capacitance
C,. For completeness, we have provided the exact value of

derived from a numerical solution of E¢R1), showing that
the lower bound is quite accurate.

neglect of capacitor radiation in a realistic model will require
some special arrangements, such as the Faraday cages intro-
duced in Fig. 1.

V. SELF-INDUCTANCE

We now improve our gedanken experiment further by con-
sidering the self-inductance of the lodp'® This consider-
ation leads to

L VAV VR VA
R, Vet i VeV g Ve 0

which can be treated as before. The modified quintic equa-
tion becomes

f(s)=s"+ as®+ Bs?+ y=0,

V24 —V24 (29)

(30

where for convenience we define=K: /K, B=L/K,, and
v=1/(K,Cy). Once again the physically admissible real so-
lutions must be negative. Although the derivatiVés) is no
longer positive definite, it is nevertheless monotofte-
causef”(s)=0 does not contain any real solutigrand it is

a principal cubic(i.e., one that does not contain a quadratic
term).2® The turning points of (s) is thus determined by

f'(s)=s°+ 2as+2B=0, (31
which admits only one real negative solutiorsatx,, where

_51/3a+(_513+\/§ /a3+5B2)2/3
Xo= .
® 5%4 58+ 5’5591
Since f'(s)=0 has only one root, and therefofé¢s) has
only one turning point, therfi(s)=0 can have at most two
negative real roots. Two real roots are impossible for a quin-
tic because the remaining complex roots must come in con-
jugate pairs. Hence we are left with only one real negative
root (s=s,= —5sy) as before, which must satisfy the energy
partition theorem:
3K CEV] g0+ 3K cCeVi 656~ 3L CEV] 5= 3CsVio
(33
The negative sign on the inductor energy requires an inter-

(32

the wire loop for Cs=100uF to about 17.1% forCg

that some of the missing energy is being stored in the induc-

=1000uF. Clearly the significance of capacitor radiation tor. We can define the unconstrained energy partition func-

increases withCg, even in the point dipole limit. Thus the

Table I. Bounds for the ratio of radiation resistaneds;) vs the capaci-

tanceC; for the usual wire loop, compared to the exact value obtained from

numerical solutions of Eq21).

Cs (uF) Kiower Kexact Kupper
100 13.558 13.618 15.980
200 10.033 10.093 11.868
300 8.381 8.441 9.941
400 7.361 7.421 8.752
500 6.647 6.707 7.920
600 6.109 6.170 7.292
700 5.684 5.744 6.796
800 5.337 5.397 6.391
900 5.045 5.105 6.051

1000 4.795 4.856 5.760

665 Am. J. Phys., Vol. 72, No. 5, May 2004

tion x(s) as:
K,s*+Kcs?
- —Ls
which compares the ratio of the total radiated energy to the
energy transferred to the inductérif we use Eq.(34), we

can do some simple manipulations to show that(B6) now
implies that the constrained functigy(s) is given by

x(s)= (34

1

x(s)=1+ [Cs’ (35
which shows thaj(s) is a positive definite function, whose
derivative also is positive fos<0.

We can see the power of plotting the constrained function
in Eq. (35) instead of the unconstrained function in E84).
We have already derived an important result for electromag-
netic compatibility(EMC),'® because the minimum value of
x in this case isy(—=), which is unity. Thus at least half the

T. C. Choy 665



missing energy must be radiat&tlthough the lower bound We are especially interested in the minimum valueRof
for x(—sg)=1, we can easily improve on this bound by such that radiation is suppress€dn analysis of the func-
noting thatf”(0)>0 at the trivial turning poins=0, that is,  tion

f(0) is a local minimum. Also at the turning poist xq, we f(s)=8%+ as®+ Bs?+ ps+ y=0, (36)
havef”(xg) = 15x8+ 3axy<0, that is,f(Xp) is a maximum. ) ) _ )

The effect of the quadratic term in E(0) is to move the With p=R/K, is quite complicated. However, we shall see
root —s, away from the origin towards; and beyond de- that it can have at most three negative rgal roots, and thus is
pending on the magnitude &f For sufficiently largeL the essentially a cubic. We observe tha(s) is a fourth-order
root can even move beyorsd, which is in fact our case. We Polynomial with f'(0)>0 andf’(—%)>0, but {"(s) is a

can estimatey(—s,) using the turning poins=x, as an cubic that can have only one negative real nogt for which
upper bound which improves on the lower bound of unity.f'(Xo) is @ minimum. Thus iff'(A) >0, thenf(s) has no
However, this bound is extremely close to unity becausdurning points, that isf(s) has at most one root. If’(\)
x(Xo)=1+3.704x 10" % for the usual wire loop. These con- <0, thenf(s) has two turning points and hence it can have
siderations are supported by numerical examples as in Ref. &f most three roots. However, not all real negative roots are
where it was found that fot =1 uH, C,=0.5uF, R=0, of equal importance to radiation.

Kc=0, andb=5 cm, the roos,=18.712 (ns) !, and hence The energy partition function is an extremely powerful
x(—So)=1+(5.712x10"%). For completeness we give the t00l, even an analysis of the quartic functibf(s) is non-
values for the usual wire loop parameters with, trivial. To proceed further, we will need some nontrivial gen-
=100uF, and we find numerically that,=12.665 (ns) ! erallzatlor_ws of the energy partition theorem for the multi-root
and hencey(—so) =1+ (2.011x 10~ 19 Although inconse- case, which unfortunately we have not been able to solve

quential for the usual wire loop, the bound>x,) will be (see Appendix B Nevertheless, we continue as before, bear-

ful f I | o ing in mind that our solution will not satisfy the transient
usetul for smafler values ct. boundary conditions &t=0.

The alert reader might have spotted some difficulties for™yyo'con by analogy with the previous cases define the un-

the casd#0. These difficulties arise because our ansatz ch . i
. . o - onstrainedy(s) as:

(14) fails to satisfy the initial boundary conditior{(0)=0,
since with an inductor present, the current cannot change s*+as? K s*+Kcs?
abruptly. Given that there is only one solution ®rwe are x(s)= —Bs+p T T Ls+R (37)
further unable to construct a linear combination of solutions _ _ ) _ )
that will give the correct boundary conditions, quite unlike and again from the associated fifth-order equation we derive
the standard.CR circuit.>3® Our solution therefore entails a the constrained function as:
further assumption of overdamping by radiation in which the

initial current will appear to be discontinuous over time Ls+ R+ i
scalesr that are much greater than a fé&iR,,4. This timer (s)=— B(s—wy)(s—wz)) Css

is the order of a few microseconds in our case for the param- XLS)= — Bs?+ ps B —Ls+R /'’
eters we have used. (38

Another difficulty is that our inductor ends up with a net
energy which we earlier interpreted as stored energy. Thi

behavior is unlike the simpleCR circuit>>® (see also Ap- o 4By
pendix B, and it is impossible in a transient situation. Thus ~ w; = — —(1t 1- —pz—>

gvherew1 andw, are the roots of th&CR circuit:

Eq. (14) is not a solution for the transient switching problem. 2p

If there is more than one real root preséste Sec. V| we R 4L

may hope that our difficulties can be resolved by an appro- =— —( 1+\/1— —2) (39
priate linear combination of these solutions as in H@ER 2L CsR

CirCUit.2'3’6Unfortunately, we will see that such a linear com- The negative Sign in Ec(38) is very important because it
bination does not provide a solution either. The unrealistichows that there are regionssthat are physically unimpor-
behavior appears to be yet another idealization associatggnt to radiation. We have fos—0, y(s)—x; also x(s)

with the point dipole approximatiotsee Appendix B —1 for s— —o just as in Eq(35). However, there is now a

turning point fory(s) given by

—JL—+L+2C.R?

For the bare 5-cm wire loop, the wire resistance is in gen- ¢~ 2CLR ; (40
eral quite negligibleR,=1.4 M}, so that the analysis of s
Sec. V suffices. For the case.=0 some numerical results which is a minimum(see Fig. 3 Thus in the overdamped
have been presented in Ref. 1 for various values of additionalaseR> R, we have a range/; <s<w, wherey(s) <0 lies
resistanceR corresponding to the underdampéri<R, in an unphysical region in which radiation may be eliminated
= /4L/C, and overdampe®&s R, cases. The latter reduces If the root moves into this range. In the underdamped case
to a conventionaLCR circuit for which radiation is sup- this possibility does not exist. However, radiation cannot be
pressed. However, exactly how this suppression takes plaé@mpletely suppressed even f<R<R;,. Our problem
is somewhat obscure from a numerical solution. Hence thés to determineR,, and to see howy(s) behaves aRR
calculations in this section will help supplement earlier—R;,. To do this we exploit the further use g{s) as fol-
work!3*through the use of the constrained energy partitioriows.
function. We first write Eq.(36) in the form:

VI. SELF-INDUCTANCE PLUS RESISTANCE
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Fig. 3. Plot ofx(s) vs s for the usual wire loop when it is just overdamped

with R=1.04R,,. We show that in this casg(s)<0 near its turning point. Fig. 4. Plot off(s) vs s for the usual wire loop when it is heavily over-

damped withR=1.64X 10°R,,. We see that there are two roots wlﬁs)
intersects the line of unit slopelotted [see Eq(43)].

f(s)=s3g(s)+ B(s—wy)(s—w,)=0, 41 _ . _ . L
® 9(s)+ A W 2 “1 tion to a negligible level. This sharp transition behavior dif-
whereg(s) =s?+ « is a positive definite monotonic function fers from the casd. =0, K.=0 (and henceR,=0) for
of s. Hence for our purposes it serves merely as a variablgvhich numerical results have already been presented in Ref.
positive cubic coefficient, which implies th&(s) is essen- 1 (see their Fig. 5 By using the constraineg(s) method
tially a cubic as noted. From the definition of the constrainedyresented here, we can show analytically from @& that

function in Eq.(38) we can further rewrite (s) as: x(—so) (which in that case is equivalent to the ratio of
f(s)=s3g(s)—sx(s)(— Bs+p) (429  Rud/R) vanishes aR increases near the transition region:
K
=s°g(s)— x(S)(— Bs+p)=0. (42b) P
X(—So) 5K, + R°CY (44)

The last step follows because=0 cannot be a solution.
Equation(42b) now has the form of a quadratic whose roots Thus our results show that the suppression of radiation using
are given by a damping resistoR in the more realistic circuit may not be

a practical solution for power supply applications.
o= Tis)= _PXE VB X9+ 4pg(9)x(3)

. (43

29(s) VIl. CAPACITOR ANTENNAS

where the positive square root is inadmissible. EQuat®  There have been recent controversies in the engineering
is extremely useful for finding the roots, because by plotting:ommunity about certain capacitor antennas patented in the
y=s andy=1(s), the root is easily found from the intersec- U.S. and Great Britain, that purport to use Poynting vector

tion. This procedure is also numerically very accurate, besynthesis for their operational principles. The owners of

cause the order of magnitude ffs) andsis almost identical these patents claim that their invention produces the Poyn-
in the region of the roots. The same cannot be said of a plding vector from crossed andB fields directly at the source

of f(s) vs s. As x(s) varies, the roots of Eq43) will in and cancels all near fieldé8 These antennas are now com-
general develop from our earlier rocts andw;, . However mercial products that have produced contradictory results for

. ) . medium frequency broadcast applications. Although we do
there is also a third root close w,, which for largeR not subscribe to the theory of Poynting vector synthesis, our

moves toward the region wheyg(s) is unphysical, see EQ. anajysis in Sec. VI shows that capacitor radiation is a reality,
(38). These results can be shown by studying the variougq therefore a capacitor antenna may be possible. A finite
limits p—0, g(s)—0, and in particular, the limib—c for  gjze capacitor antenna constructed from two circular metal
which analyt|ca| reiults are Obtalnak(EEe the fO||OWInQ]. p|ates will (depending on frequencwba\/e impedance char-

In Fig. 4 we plotf(s) for the usual wire loop parameters. acteristics that differ from a point electric dipole. Such an
The valueR=1.64x 10°R,~1826(), whereR.,~0.111()  antenna may be modeled as an approprigrhaps quzige
is now very close to the minimum valuR,, above which ~ complicated magnetic current loogsee Appendix A%

radiation becomes insignificant. The roots are found te be Y aré now notinterested in suppressing the radiation, but in
——8.663 (nsy ~7253 (9% and —054g8 MiNIMizing nonradlatl\_/e Ios_se_s. In add|t|0n,_ an antenna
%108 (ns)"* for which the values ofy are y=0.190 needs to focus all of its radiation in the desired operating

10 . "~~~ frequency range, because stray radiation will be a source of
0.104, and 6.348 10 °, respectively. However even for EMC problems.

this large value ofR, radiation is suppressed but is ot The getailed study of such an antenna is complicated, and
negligible” To reduce radiation to a negligible level, the \ye will not pursue it here. A preliminary comparison of ra-
value of R should be closer t&;~1.68x 10°R;~1871Q gjation efficiency, though, can be obtained by noting that for
so that the only remaining root faris close tos=w, for g sinusoidally driven current, the imaginary switching fre-
which radiation is negligible. Hence the change occurs oveguency parametes can be replaced by the real angular fre-
a rather small range d® within about 2.5% ofR, with the  quencys—iw (w=2=f).° ! In this case the radiation ef-
unfortunate fact that some 4@imes the resistance &, or ficiency can be determined by comparing the radiation
10° times the resistance &, is required to suppress radia- resistances of the capacitor and the wire loop, if both systems
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are driven by identical signal sources that are optimally Antenna theory is an interesting topic with instructive ar-
matched for power transféf! For a small size capacitor ticles published previousff:*®* Some of the results obtained
antenna(typically of radiusa<\/10), the ratio of its radia- in this paper may be useful additions to modern texts on

tion resistance compared to the small wire loop is now giverelectromagnetism and antenna theory. The implications of
by [see Egs(8) and(18)] our study for EMC directives and for novel antenna designs
are topics for further research. Students should be taught to

2 2y 2
P Keo _ € (45) appreciate that there is much more to meet the eye than two
Kot 47t simple capacitors.

For the point dipole approximation we requifes\ andb
<\. A practical system would also hawe<b such asf ACKNOWLEDGMENTS
=b/10 andb=A/10. With these param.etersc,|:1/(4774) Support from the UK Engineering and Physical Sciences
~2.57x10 3, which makes the capacitor a rather poor an-Research Council through Grant Nos. GR/M71404/01 and
tenna in comparison to the wire loop. GR/R97047/01 is acknowledged. The author wishes to thank

For larger size systems other considerations become inthe referees for their constructive comments and in particular
portant, which we will not discuss hefgsee Appendix A to one of them for pointing out several errors in an earlier
Wire antennas, for example, resonate at the operating frarersion of the manuscript.
guency by making use of the free space capacitance leading

to the approximate formulz. APPENDIX A: RADIATION PROPERTIES OF A
143 FINITE SIZE CAPACITOR ANTENNA
I-dipole% I (46)

In this appendix we provide some preliminary studies of a
for the length of a thin wire half-wave dipole antenna in finite size air-spaced capacitor antenna. The capacitor is as-
meters, with the frequendyin MHz. Equation(46) is accu- ~ sumed to be made of two circular discs of radaiga~\)
rate up to about 100 MHz. In the same way, capacitor anterwith separationf<\. As far as the author is aware, the
nas can resonate using the free space inductance. The f@lementary results presented here are not found in standard
mula corresponding to Eq46) for the capacitor antenna, texts® ! The key assumption is that there is a uniform
including its relative performance, would be an interestingcharge area density on the disc, that iSQ= 7wa’c (see Fig.
research project for a graduate student. For practical systens$. Just as for case of a large current loop, the ability to
a lumped-parameter circuit analysis including the propemaintain a uniform charge density at finite frequencies re-
self-inductance. as well as other stray inductances would bequires the introduction of a rather sophisticated type of phase
needed?® However modern PSpice softwd?end other an-  shifters!! the details of which we will not be concerned with
tenna modeling softwafedo not include the radiation resis- here. For an elementary discussion of why a capacitor’s
tance from the capacitors discussed here, so some care ne@timrge density cannot be uniform at high frequencies, see,
to be exercised in their use. for example, Ref. 28. In a more sophisticated modéh)
has to be determined self-consistently with the fiEldal-
though some approximate charge distribution may suffice as
VIIl. CONCLUSION in the wire antenna.
We assume a sinusoidal charge oscillation of the type
We have extended the discussion of the radiation from thg(t) = qy cosw(t—r/c) for each area element that forms the
transient switching of charges between two capacitors. Wenfinitesimal dipoled p,= o¢dppd¢. Then in a plane cutting
have shown that the capacitors themselves can radiate, usifigfough a pair of opposite dipole elements, the radiafon
a point electric dipole model. We found this radiation to befield at a distant poin® at (r,6, ) will be a sum of two
small but not insignificant, and hence an extension of theomponents given B§*?
lumped-parameter circuit model of Ref. 1 was also pre- 0yl 0 iy o
sented. We then included the self-inductance and an external dE,=dEge'"*+dEze™""“=2dE, cosy/2, (A1)
resistanceR', showing th‘i‘t a minimum vaILEm, which must  \wheredEY is the field due to each dipole element,
be approximately 10 times the wire resistanc®,, is
needed to suppress the radiation. The exact value is critical,
and we developed an accurate numerical procedure to extract
this parameter using the constrained energy partition fun

oldppdd »?
#rc—zsinecow(t—r/c). (A2)
0

C'i'he relative phase shiit is due to the path differendsee

0__
dE9=

tion x(s). . ) e
Exactly how much radiation a commercial capacitor radi-the insert to Fig. pand is given by
ates will depend on its effective inductance, resistance, and #=28p siné, (A3)

dielectric propertie$?3® The calculation of the radiation
would be a good exercise for an undergraduate student usi
the methods developed here. Our results show that althoud
the details of the capacitor radiators are unimportant for the dE,

recovery of the missing energy, they are important for the dH"’:Z_’ (A4)
study of the transient response and electromagnetic compat- 0

ibility. Unfortunately, further difficulties remain for the case whereZ,= \uq/€,~377( is the impedance of free space.
L +# 0, due to the failure of our solutions to satisfy the bound-An integration over¢ from 0 to = is trivial (note a full 27
ary conditions required for transient behavior at the initialintegration would double countThe integral ovep from 0
time (see Appendix R to a is also trivial with the final result:

here 3= w/c. We also can easily obtain th field in the
diation zone because it is simply given by
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. Fig. 5. Radiation fields from a finite

\ size capacitor antenna. The insert

N shows the path difference between a

\ diametrically opposite pair of dipoles
\ B on the disc to a distant poirf.

essary, which we may choose &f0)=C.V(0)=0. For
comparison, note that the simpleCR circuit has only the
first two boundary conditions because it has just two roots.
The resulting 3X 3 matrix is quite involved so we shall not
discuss this further. Moreover, we do not need to pursue this
calculation to see that it would not work. This procedure fails
because EQq(29) is a nonlinear differential equation. The
o ot w?a? substitution of the solution E¢B1) will produce cross terms

0= Ze o2 Sindcosw(t—ric). (A6)  that do not cancelsee also Appendix B in Ref.)1The

0 reader might think that a numerical integration of E29)

The radiation pattern of our antenna which can be obtainedould produce the appropriate transient solution. Once again,
from Eq.(A5) is | (Ba, 8) =|E,|?/Z, and can be easily com- he/she will be disappointed because the nature of(£9).
pared with a point dipole, which as can be seen in@) with the required boundary conditions/ (0)=—Vyg,
is proportional to sifif. Unfortunately, calculating the total |(0)=C,Vv.(0)=0 is incompatible with any real value for
radiated power involves difficult integrals oveér and we  the higher derivativegincluding zerg at t=0. This incom-

W|I|Ifri1rc;]t ptarsrt:e thv'vs c?écglatmz/n Lurtr:err. Th%c?ilcu:agot? Ozt?ﬁ atibility can be seen by examining the Taylor serie¥/t)
Sel-impedance wollld be eve ore compiicate a ear the origin of timé= 0. Hence any numerical integration

H —12,15
for the wire antennd: scheme would fail to generate a real solution. These difficul-
ties appear to be due to the point dipole approximation.

. . 1 .
Basin(Basing)+ mcos{ﬂa sin @)

E_ al
0_2€0r

o cosw(t—r/c). (A5)

For Ba—0 we easily recover the point dipole limit,

APPENDIX B: THE MULTI-ROOT CASE AND Nevertheless, we can easily see that all the missing energy
DIFFICULTIES WITH TRANSIENT BOUNDARY must be dissipated in the resistan€§Saq, Rc raq» andR, as
CONDITIONS it should be. This result follows once again from the energy

partition theorem, because by multiplying E@9) by C§

If we assume that we have three real rosts¢;, i X )
and integrating, we have

=1,2,3(remember that we can only have either one or three
for Eq. (36), we can construct a linear combination from the

solutions as: Vv
V(1) = Aefil+ Befl + Cefat, (B1) cgf dt(K,\'7§+ KV2+LVVe+ RV + é £
0
The appropriate boundary conditions afg0)=—V; o and °
o~y _ - : : ® . . 1
I(O_)— CSVC(.O)—O. However Eq(29) is a thlrd-orde_r_d|ff§ar- :Cgf dt(K,V2+ K V2+RV2) — ECsVio:O- (B2)
ential equation. Hence one further boundary condition is nec- 0
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